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We investigated the influence of induced fit of the androgen receptor binding pocket on free
energies of ligand binding. On the basis of a novel alignment procedure using flexible docking,
molecular dynamics simulations, and linear-interaction energy analysis, we simulated the
binding of 119 molecules representing six compound classes. The superposition of the ligand
molecules emerging from the combined protocol served as input for Raptor, a receptor-modeling
tool based on multidimensional QSAR allowing for ligand-dependent induced fit. Throughout
our study, protein flexibility was explicitly accounted for. The model converged at a cross-
validated r2 ) 0.858 (88 training compounds) and yielded a predictive r2 ) 0.792 (26 test
compounds), thereby predicting the binding affinity of all compounds close to their experimental
value. We then challenged the model by testing five molecules not belonging to compound classes
used to train the model: the IC50 values were predicted within a factor of 4.5 compared to the
experimental data. The demonstrated predictivity of the model suggests that our approach
may well be beneficial for both drug discovery and the screening of environmental chemicals
for endocrine-disrupting effects, a problem that has recently become a cause for concern among
scientists, environmental advocates, and politicians alike.

Introduction
Nuclear receptors represent the largest family of

ligand-dependent eukaryotic transcription factors trans-
forming extra- and intracellular signals into cellular
responses by triggering the transcription of target genes.
In particular, they mediate the effects of hormones and
other endogenous ligands to regulate the expression of
specific genes, thereby regulating development and
metabolism. Among other members, this family includes
receptors for the various steroid hormones, e.g. the
androgen, estrogen, glucocorticoid, and progesterone
receptor. Unbalanced production or cell insensitivity to
specific hormones may result in diseases associated with
human endocrine dysfunction.1 Androgens and the
androgen receptor (AR) play an essential role in the
growth of normal prostate. They are, however, also
involved in the development of prostate cancer,2 repre-
senting the most common male malignancy in the
United States. Both steroidal and nonsteroidal deriva-
tives have shown clinical benefits as chemotherapeutic
agents for prostate cancer. Still, several of these anti-
androgens, for example cyprosterone, show overlapping
effects with other hormonal systems.3 As the binding
sites of steroid hormone receptors share a common
topology: a hydrophobic cavity accommodating the
steroid-ligand scaffold and a hydrogen-bonding pattern,
typically including the two terminal polar groups of the
ligand molecule (cf. Figure 1, upper panel); these
overlapping effects may well be seen as a common
phenomenon.

In the complex of 5R-dihydrotestosterone with the
androgen receptor,4 the ligand forms a hydrogen bond
via the oxygen of its carbonyl group in the A ring with
Arg752 and two through its hydroxyl group with Asn705
and Tyr877, respectively. The aliphatic scaffold of the
ligand molecule is accommodated by a hydrophobic
pocket consisting of Leu707, Gly708, Trp741, Met742,
Met745, Phe764, Met787, Leu873, and Met895.

Many environmental chemicals, e.g. flavones or ke-
pone, display similar structural properties: a hydro-
phobic core and one or two terminal polar groups.
Consequently, they may bind to a nuclear receptor
influencing the balance of the endocrine system.1 The
presence of these so-called endocrine disruptors in the
biosphere has become a worldwide environmental con-
cern. It has been concluded that such compounds elicit
a variety of adverse effects in both humans and wildlife
including promotion of hormone-dependent cancers,
reproductive tract disorders, and a reduction in repro-
ductive fitness. A variety of compounds in the environ-
ment have been shown to display agonistic or antago-
nistic activity toward the androgen receptor, including
both natural products and synthetic compounds.

The concern over xenobiotics binding to the androgen
receptor has created a need to both screen and monitor
compounds expected to modulate endocrine effects. We
therefore developed an in silico model to quantitatively
predict the potential of structurally diverse ligands for
binding to the androgen receptor using a multidimen-
sional QSAR technique, specifically allowing for induced-
fit. To identify the binding mode at the true biological
receptor, a novel stepwise protocol consisting of flexible
docking, molecular dynamics (MD) simulations, and
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linear interaction-energy analysis (LIE) was developed
(Scheme 1).

The Importance of Induced Fit for Ligand Bind-
ing to the Androgen Receptor. As the compounds
binding to the androgen receptor (Figure 2) vary sub-
stantially in their structure, identifying the correct

binding mode is all but unambiguous. The suitability
of a QSAR model for predictive purposes depends
critically on the alignment of the ligand molecules. Two
recent QSAR studies5 on the androgen receptor also
used docking techniques to derive a protein-based
alignment. However, in those studies, the receptor was

Scheme 1. Flowchart of the Computational Procedure Including Alignment and Prediction of Binding Affinities

Figure 1. Stereo representation of DHT (color ) cyan) and DHT benzoate binding (color ) green) to the androgen receptor.
Upper panel: Docking of DHT benzoate to the X-ray structure of the androgen receptor-DHT complex (color ) cyan) would not
provide enough space to accommodate additional steric bulk at the 17â-position. To display the ligand accessible volume of the
binding pocket of the androgen receptor-DHT complex, the solvent-accessible surface is shown. Lower panel: Local induced fit
as simulated with MD accommodates the additional volume of DHT benzoate.
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kept rigid. Recently, it was demonstrated6 that the
progesterone receptor, another member of the steroid-
hormone class of nuclear receptors, tolerates larger
substituents at the 17R-position of the steroid scaffold
as compared to the endogeneous ligand progesterone.
These results postulate a local induced-fit and suggest
that similar phenomena might be observed for the
androgen receptor as well. Thus, DHT containing an
additional benzoate moiety at the 17â-position binds
with 260 nM to the androgen receptor. The experimental
3D structure of the androgen receptor-DHT complex
as rigid template cannot provide enough space to
accommodate the benzoate portion (Figure 1, upper
panel). When performing MD simulations of DHT
benzoate binding to the androgen receptor (Figure 1,
lower panel), the side chain of Phe891 is relocated by
about 3 Å, making room to accommodate the bulky
benzoate fragment at the 17â-position; in addition,
Ile899 and Asn705 reorient their side chains.

Materials and Methods

Ligand Data and Molecular Structure Building. The
structural and pharmacological data for 119 androgen-receptor
binding compounds were obtained from Fang et al.7 The
affinity measurements have been performed using a competi-
tive binding assay with recombinant rat protein expressed in
Escherichia coli. The amino acid sequence of the ligand binding
domain is identical to that of the human androgen receptor
ligand binding domain. 3H-Methyltrienolone (R 1881) was used
as the high-affinity ligand in the measurements.

The three-dimensional structure of all ligand molecules was
generated using MacroModel 6.58 and optimized in aqueous
solution based on the AMBER* force field.9 The partial charges
for the flexible docking study were computed using the ESP
methodology as implemented in MOPAC.10

Alignment Procedure. The 3D structure of the androgen
receptor complexed by dihydrotestosterone (DHT) is available
at a resolution of 2.0 Å4 and was used as a template for docking
(receptor-mediated alignment). To account for induced fit, we
used flexible docking based on a Monte Carlo search protocol
(software Yeti)11 and allowing for an adaptation of the protein
residue side-chains to each individual ligand molecule. Mul-
tiple docking solutions were identified with a similar score.
Even a directional force field11 is not truly suited for scoring
ligand-protein interactions. As demonstrated by several
authors, sampling different substates of the ligand-receptor
space (e.g. free-energy perturbation) improves the quality of
the prediction of binding affinities.12 In our approach, we chose
the orientations with the most favorable scores during flexible
docking and, subsequently, performed MD simulations to
generate an ensemble of configurations for each binding mode.
To quantify the relative free energy of ligand binding of the
different binding patterns, we applied linear-interaction energy
(LIE) analysis.13 LIE quantifies the free energy of a compound
in a given binding mode, subtracting electrostatic and van der
Waals interaction energies with solvent averaged over the
entire simulation from the corresponding energies when bound
to the protein:

Figure 2. Compound classes and representative molecules used in our QSAR study.

∆G ) R(〈Elig-prot
elec〉 - 〈Elig-solv
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For quantifying the relative energies of the two binding
modes A and B, this equation reduces to

as the interaction energies with the solvent are identical. While
the parameter R ) 0.5 is theoretically derived,13 values for the
parameter â vary between 0.1 for predominantly hydrophilic
binding sites and 0.9 for predominantly hydrophobic pockets.14

As the androgen receptor features a large hydrophobic moiety
and two polar regions, we chose â ) 0.5.

As this procedure is computationally demanding,15 we sim-
plified the procedure assuming that the overall binding mode
remains unaltered within each compound class. Consequently,
we did not apply the analysis to each individual compound,
but solely to one representative ligand per compound class (cf.
Figure 2). The remaining molecules of the very compound class
were then aligned to the representative ligand molecule, where
the common scaffold served as template. Finally, each indi-
vidual ligand-receptor complex was energetically refined
allowing for subtleties in the ligand-receptor adaptation.

MD Simulations. The parameters for the ligand molecules
were assigned using the antechamber module of AMBER 7.0.16

Table 1. Linear-Interaction Energy Analysis for Three Different Orientations of Nonylphenol and Dihydroxymethoxychlorolefin As
Identified by the Flexible-Docking Search Protocol (all values are given in kcal/mol)'

Compound Binding mode 〈EVdW
lig-prot〉 〈Eelec

lig-prot〉 ∆∆Gi-lowest
a

Nonylphenol A -19.2 -5.8 1.7
B -20.4 -5.6 1.2
C -18.8 -9.5 0.0

Dihydroxymethoxychlorolefin A -18.5 -6.8 2.9
B -19.5 -9.2 1.2
C -18.5 -12.5 0.0

a The ∆∆Gi-lowest values were calculated according to eq 2 using R ) â ) 0.5.

Figure 3. Stereo representation of the superposition of the three different orientations of nonylphenol (upper panel) and
dihydroxymethoxychlorolefin (lower panel). The most favorable binding mode is highlighted in green (cf. Table 1).

Figure 4. Superposition of the molecules representing the different compound classes (one each) used in our QSAR study. The
binding pocket of the experimental androgen receptor-DHT complex displays steric clashes when used as a rigid template for
docking.

∆∆GAB ) ∆GA - ∆GB ) R(〈Elig-prot
elec〉A - 〈Elig-prot

elec〉B) +

â(〈Elig-prot
VdW〉A - 〈Elig-prot

VdW〉B) (2)
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Figure 6. Comparison of predicted and experimental binding affinities for the 119 molecules used in our study. Left: training
set (dark green/light green; model building) and test set (red/orange; model validation). Threshold compounds are shown in light
green and orange, respectively. Right: prediction set.

Figure 5. Structures of ligand-receptor complexes for dimethylstilbestrol (upper panel), R-zearalenol (middle panel), and
nonylphenol (lower panel) binding to the AR, as obtained from MD simulations. The ligand molecules and protein are shown as
sticks, water molecules as spheres. The carbon atoms are colored in green. The structures are overlaid onto the DHT-AR complex
(colored in cyan) to demonstrate the observed induced protein fit.
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To be consistent with the underlying force field, the charges
were reassigned using AM1-BCC.17 A solvation cap of 30 Å
around the geometric center of the binding pocket was created,
and the whole system was minimized using the sander module.
During the MD simulation (200 ps equilibration, slowly
heating from 100 to 300 K, followed by 300 ps of data
collection) all atoms more than 25 Å away from the center were
restrained to their original position. The mm_pbsa module was
chosen to compute the average interaction energies between
ligand and receptor during the MD simulation, as needed for
the LIE analysis.

Multidimensional QSAR. Raptor,18 a receptor-modeling
concept developed at our laboratory, explicitly and anisotro-

pically allows for induced fit by a dual-shell representation of
the three-dimensional binding-site model, mapped with phys-
icochemical properties (hydrophobic character and hydrogen-
bonding propensity) onto it. The inner shell is tailored using
the most potent ligand of the training set, and the outer shell
accommodates the topology of all molecules from the training
set. The adaptation of both field and topology of the receptor
surrogate to each ligand is achieved by combining a steric
adjustment to the topology of the very ligand and a component
due to the attraction or repulsion between ligand and receptor
surrogate. The latter is obtained by correlating their physi-
cochemical properties (hydrophobicity and hydrogen-bond
propensity) in 3D space.

Table 2. Experimental and Calculated IC50 for Compounds of the Training and Test Set Binding to the Androgen Receptor

Compound
pIC50
(exp)

pIC50
(pred)

error in
pIC50 Compound

pIC50
(exp)

pIC50
(pred)

error in
pIC50

Test Set
â-3â-Androstanediol 6.87 6.48 0.39 Nonylphenol 4.94 4.76 0.18
Methyltestosterone 7.80 7.76 0.04 4-tert-Butylphenol 3.84 4.12 0.29
Androstenediol 5.86 6.19 0.33 4-sec-Butylphenol 4.07 3.75 0.31
5R-Androstan-3â-ol 5.77 6.04 0.27 4-Heptyloxy-phenol 4.83 3.84 0.99
â-17â-Estradiol 6.39 5.98 0.41 Methylparaben <3.37 3.17
3-Deoxyestradiol 7.05 6.28 0.77 Vanillin <3.37 2.12
Progesterone 5.81 6.46 0.65 Monohydroxy-methoxychlorolefin 4.69 4.84 0.16
Prednisolone <4.37 3.80 p,p′-DDD 4.81 4.07 0.74
Cholesterol <4.37 4.84 Bisphenol A 4.13 4.17 0.04
Dimethylstilbestrol 4.85 5.43 0.58 4-Hydroxybenzophenone 3.74 4.02 0.28
7-Hydroxyflavone <4.37 5.13 Chlordane 5.00 6.17 1.17
Chalcone 4.19 4.25 0.06 Aldrin 4.49 4.83 0.34
â-Zearalenol 4.42 4.54 0.12 Lindane 4.39 4.58 0.19

Training Set
Methyltrienolone (R1881) 8.51 7.95 0.56 Nafoxidine 4.89 4.62 0.27
Mibolerone 8.78 8.45 0.33 Clomiphene 4.87 5.34 0.46
Trenbolone 8.58 7.63 0.95 Flavone 4.11 3.53 0.58
R-3R-Androstanediol 5.70 6.47 0.77 6-Hydroxyflavone 3.74 4.32 0.58
5R-Androstan-17â-ol 7.96 7.31 0.65 Flavanone 4.26 3.68 0.58
â-Testosterone 5.51 5.10 0.40 4′-Hydroxyflavanone 4.24 3.81 0.43
R-Epitestosterone 7.80 7.62 0.18 6-Hydroxyflavanone 4.73 4.75 0.02
R-5R-Dihydrotestosterone 8.65 7.82 0.84 Genistein 4.07 3.97 0.09
â-5â-Dihydrotestosterone 6.42 7.11 0.69 Equol 4.13 3.70 0.43
11-Keto-ketosterone 7.05 7.23 0.17 Coumestrol <4.37 3.57
4-Androstenediol 6.20 6.39 0.18 4′-Hydroxychalcone 4.24 3.91 0.33
Testosterone proprionate 5.72 6.05 0.33 4-Hydroxychalcone 4.32 4.01 0.31
DHT benzoate 6.59 7.05 0.46 â-Zearalanol 4.80 4.79 0.01
4-Androstenedion 5.89 5.61 0.28 Zearalanone 4.37 4.41 0.04
Androsterone 4.39 4.98 0.59 R-Zearalenol 5.00 5.45 0.45
5R-Androstan-3,11,17-trione 4.88 5.82 0.95 4-n-Octylphenol 4.72 4.11 0.61
5,6-Didehydroisoandrosterone 4.53 5.13 0.60 4-Dodecylphenol 4.69 5.18 0.49
R-17R-Estradiol 4.12 4.72 0.61 4-tert-Amylphenol 4.11 3.56 0.55
4-Hydroxyestradiol 5.59 5.47 0.13 2-sec-Butylphenol 3.99 3.59 0.40
2-Hydroxyestradiol 5.07 5.49 0.42 4-Chloro-2-methylphenol 3.92 3.55 0.37
17-Deoxyestradiol 4.38 5.01 0.63 3-Chlorophenol 3.34 3.47 0.14
Estriol 3.36 3.91 0.55 Isoeugenol 3.69 3.25 0.43
Ethinylestradiol 5.09 5.45 0.36 Igepal CO-210 4.74 4.56 0.18
3-Methylestriol 4.27 5.15 0.88 Propylparaben 3.51 3.68 0.17
16â-OH-16R-Me-3Me-estradiol 4.43 4.94 0.50 4-Benzyloxy-phenol 3.63 4.29 0.67
Norethynodrel 5.81 6.15 0.33 Dihydroxymethoxychlorolefin 5.20 5.16 0.04
Norethindrone 6.92 6.69 0.24 p,p′-Methoxychlor 4.55 4.42 0.13
Norgestrel 7.73 6.94 0.79 HPTE 5.04 4.53 0.51
Promegestone 5.88 6.42 0.54 p,p′-Methoxy-chlorolefin 4.31 4.65 0.34
6R-Methyl-17R-hydroxyprogesterone 6.10 6.23 0.13 o,p′-DDT 4.83 5.31 0.48
6R-Methyl-17R-hydroxyprogesterone acetate 7.45 6.91 0.54 o,p′-DDD 4.98 4.51 0.48
Cyproterone acetate 6.20 6.68 0.49 o,p′-DDE 4.69 5.23 0.55
Corticosterone 4.63 4.62 0.01 p,p′-DDT 4.74 4.68 0.06
Cortisol 3.74 3.97 0.23 p,p′-DDE 4.81 4.52 0.29
Aldosterone <4.37 4.85 Bisphenol B 4.42 4.59 0.16
Dexamethasone 4.09 4.56 0.48 p-Cumylphenol 4.40 4.21 0.19
Spironolactone 6.17 6.66 0.49 2,4-Dihydroxy-benzophenone 3.99 3.42 0.57
Diethylstilbestrol 4.85 5.06 0.21 Benzophenone 3.89 3.24 0.65
4,4′-Dihydroxystilbene 4.08 4.83 0.75 4,4′-Dihydroxybenzophenone 3.84 4.21 0.38
3,3′-Dihydroxyhexestrol 4.43 4.87 0.44 4-Hydroxybiphenyl 5.08 4.48 0.60
Hexestrol monomethyl ether 4.89 4.28 0.61 Endosulfan 4.63 5.05 0.43
trans-4-Hydroxystilbene 4.38 4.43 0.05 Heptachlor 4.87 5.39 0.52
Tamoxifen 4.92 4.59 0.33 Kepone 4.92 5.49 0.56
4-Hydroxytamoxifen 5.03 4.51 0.52 2,4,5-T 3.34 2.46 0.88
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The underlying scoring function for evaluating ligand-
protein interactions includes directional terms for hydrogen
bonding (∆GHbond) and hydrophobicity (∆GHphob) as well as
terms for the cost of the topological adaptation (∆GIF) and the
changes in entropy (T∆S) upon ligand binding:9

Experimental determination of binding affinity for weak
inhibitors is often prevented due to limited solubility or limited
sensitivity; thus, only an upper limit (‘threshold’) for IC50

values is accessible. These substances are typically neglected
in QSAR studies, as no experimental binding affinity can be
specified. However, these molecules contain valuable informa-
tion about the binding site of the receptor, i.e., the information
that they do not bind strongly to the receptor. Particularly,
for lead-finding purposes and for estimating the toxic potential
of chemicals, a computational model should also be able to
separate strong- and moderate-binding inhibitors from weak
and nonbinding compounds. Consequently, we extended the
Raptor concept with a threshold option: the optimization
algorithm forces the model to reproduce the binding affinity

of the weak- and nonbinding ligand molecules to be lower than
the experimental limit. Obviously, compounds which are
experimentally measured to bind weaker than a threshold
IC50

(t) and are correctly classified during the model optimiza-
tion do not contribute to the lack-of-fit function. If the
corresponding binding affinity of the ligand is predicted higher
than the threshold, the lack-of-fit function applies a penalty
proportional to ∆G(t) - ∆G.

Results

Alignment Procedure. Table 1 and Figure 3 sum-
marize the results of the novel alignment protocol for
nonylphenol and dihydroxymethoxychlorolefin: the flex-
ible-docking protocol identified three favorable binding
modes for both ligands. For both compounds, LIE
analysis favorized the energetically lowest entity by 89%
(∆∆G ) 1.2 kcal/mol).

Figure 4 shows the relative orientation of a repre-
sentative molecules of each compound class as identified
by flexible docking, MD simulations, and LIE analysis.

Figure 7. Upper panel: Stereo representation of the binding-site model of the androgen receptor as generated by the Raptor
technology (beige ) hydrophobic fields; blue ) hydrogen-bond donating propensity; red ) hydrogen-bond accepting propensity;
green ) hydrogen-bond flip-flop character). Only the inner shell of the Raptor model is shown with bound DHT; lower panel:
Schematic representation of the physicochemical properties of the receptor model and their consistency with the experimental
structure.

∆G ) ∆Gconstant + ∆GHbond + ∆GHphob + T∆S + ∆GIF (3)
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The figure demonstrates that the androgen receptor-
DHT complex as rigid entity would not provide enough
space to accommodate the various compound classes
resulting in steric clashes. This suggests the importance
of induced-fit during ligand binding to the androgen
receptor.

Figure 5 shows the resulting structures of the ligand-
receptor complexes. If dimethylstilbestrol is binding to
the AR (upper panel) the hydroxyl group, binding to the
same moiety, as the carbonyl group at the 3-position of
DHT does, induces a conformational flip of the side
chain of Gln711. The hydroxyl group of dimethylstil-
bestrol subsequently engages in a hydrogen bond with
the amide oxygen atom of the side chain of Gln711. The
same induced fit is observed if R-zearalenol is binding
to the AR (middle panel) building a hydrogen bond
between its hydroxyl group and the amide nitrogen
atom of the side chain of Gln711. In addition subtle
changes (1-2 Å rms deviation) in the position of the
hydrophobic side chains accommodate the topology of
the very ligand molecule.

Multidimensional QSAR. Our QSAR study was
based on 119 ligands; 88 molecules thereof were as-
signed to the training set, and the remaining 31 used
as test and prediction compounds. Induced fit was
accounted for by the dual-shell concept of Raptor. To
allow for topological and physicochemical variation at
the true biological receptor with different ligands bound,
the Raptor results were averaged over 10 individual
models defining a surrogate family.

The model converged at a cross-validated r2 ) 0.858
for the training compounds and yielded a predictive r2

) 0.792 for the test compounds. Experimental and
calculated IC50 values are compared in Figure 6 and
Table 2. On the average, the predicted binding affinity
of the training ligands deviates by a factor 1.7 from the
experiment; those of the test set deviate by a factor 1.6
in IC50. The maximal observed deviation of an individual
molecule are 7.8 and 13.9, respectively. All seven weak-
and nonbinding molecules were predicted to bind with
affinities close to or weaker than the experimental
threshold value, indicating that our model is able to
distinguish these molecules from strong binders. A
scramble test19 (predictive r2 ) -1.444) demonstrated
the sensitivity of the model family toward the biological
data.

Comparison of the Raptor model with the binding site
at the true biological receptor (Figure 7) shows that the
hydrophobic pocket (represented by Leu707, Gly708,
Trp741, Met742, Met745, Phe764, Met787, Leu873, and
Met895) and hydrogen-bonding moieties (H-bond ac-
ceptors mimicking Tyr877; H-bond donors mimicking
Arg752 and Asn705) are well identified by the model.

Prediction of External Compound Classes. To
predict the androgen-receptor-mediated harmful poten-
tial of environmental chemicals, the virtual model has
to be able to predict the binding affinity of structurally
diverse compounds. Thus, using the optimized receptor
model, we have addressed the following question: Can
the receptor model predict the binding affinity of
compounds within a foreign data set, i.e., substances
from different structure classes than those used to train
the system? We have selected four polychlorinated
biphenyls and 3,4-diphenyltetrahydrofuran (Figure 8),

compounds which are not represented in the training
set (Figure 2). These two structure classes were ran-
domly selected and separated from the 119 compounds
prior to the QSAR simulation. The compounds were
superimposed onto the ligand molecules of the training
and test set using the same alignment protocol as
described above. The binding affinities of these com-
pounds were predicted using the Raptor model pre-
sented in the previous paragraph. The affinities lie
well within 1 order of magnitude to the experiment-
ally measured value (cf. Figure 6, right panel and
Table 3).

Conclusions
To quantitatively predict relative free energies of

ligand binding to the androgen receptor, it is of utmost
importance to simulate induced fit. We have devised a
new ligand-alignment protocol combining flexible dock-
ing, MD simulations, and LIE analysis. The resulting
superposition of the ligand molecules of six diverse
compound classes served as input for Raptor, a receptor-
modeling concept based on multidimensional QSAR
which allows for ligand-dependent induced fit. Protein
flexibility was explicitly accounted for throughout our
study. The resulting model allows the prediction of
binding affinity of all compounds close to the experi-
mental value. Most importantly, we could show that our
concept, flexible docking combined with multidimen-
sional QSAR, is able to predict molecules belonging to
compound classes well outside those used for the train-
ing process.

The predicitivity of the model, demonstrated for the
diverse test set as well as for two external compound
classes, suggests that our approach is suited for the

Figure 8. The four polychlorinated biphenyls and 3,4-
diphenyltetrahydrofuran used to challenge the Raptor model
for predicting affinities of structural compound classes differ-
ent from the training and test set.

Table 3. Experimental and Calculated IC50 for the External
Compound Classes Binding to the Androgen Receptor

Compound
pIC50
(exp)

pIC50
(pred)

error in
pIC50

2,3,4,5-Tetrachloro-4′-biphenylol 4.79 4.23 0.56
2,4′-Dichlorobiphenyl 4.79 4.31 0.48
2,2′,4,4′-Tetrachlorobiphenyl 4.77 5.50 0.74
3,3′,5,5′-Tetrachloro-4,4′-biphenyldiol 4.42 4.62 0.20
3,4-Diphenyltetrahydrofuran 4.54 4.21 0.33
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prediction of endocrine-disrupting effects of environ-
mental chemicals, both existing and hypothetical, a
problem that has recently become a cause for concern
among scientists, environmental advocates, and politi-
cians alike. This has been underscored by the US
legislation in 1995/6, by mandating that chemicals and
formulations must be screened for potential endocrine-
disrupting activity before they are manufactured or used
in certain processes.20
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